Etude expérimentale de la convection mixte entre deux plans horizontaux à températures différentes—II

M. T. OUAZZANI,[†] J. K. PLATTEN et A. MOJTABI[†]

Université de l'Etat, B 7000 Mons, Belgique

(Reçu le 27 Juin 1989)

Résumé—Une investigation expérimentale par anémométrie laser est réalisée pour déterminer les conditions d'apparition de la convection mixte sous forme de rouleaux transversaux ou longitudinaux dans un canal rectangulaire. Les expériences sont effectuées pour des nombres de Reynolds *Re* et des nombres de Rayleigh *Ra* dans le domaine $0.03 \le Re \le 3.3$ et *Ra* ≤ 4700 , utilisant l'eau comme fluide d'étude.

1. INTRODUCTION

LE PROBLÈME de l'écoulement laminaire forcé dans un canal horizontal chauffé par le bas présente un intérêt considérable en vue d'applications technologiques comme le refroidissement de composants électroniques [1] ou le dépôt chimique de couches minces [2, 3]. Plusieurs auteurs ont étudié l'influence d'un écoulement laminaire, dynamiquement et thermiquement établi, sur le mouvement thermogravitationnel d'un fluide dû au gradient de température créé entre les deux plaques horizontales du conduit. Le présent travail a pour but une étude quantitative du champ de vitesse, par anémométrie laser, dans le processus de la convection mixte en phase liquide.

En l'absence d'écoulement forcé et si le nombre de Rayleigh Ra est supérieur à une valeur critique, Davis [4] dans une étude théorique et Stork et Müller [5] dans une étude expérimentale ont montré, que pour une boîte rectangulaire, les instabilités thermiques associées au chauffage de la plaque inférieure se manifestent sous la forme de rouleaux dont l'axe est parallèle aux plus petits côtés verticaux. Par contre les écoulements pour lesquels le nombre de Reynolds Re est non nul peuvent être séparés en deux groupes: écoulements avec des faibles nombres de Reynolds $(Re < Re_{c})$ et écoulements avec nombres de Reynolds plus grands ($Re > Re_c$) où Re_c , qui est fonction de la nature du fluide, de Ra et de la géométrie du conduit, représente le nombre de Reynolds critique caractérisant la transition entre les deux modèles d'écoulement [6-8]. Il semble établi, sur base de la théorie linéaire de la stabilité hydrodynamique, que si $Re < Re_c$ l'écoulement n'a pas une influence décisive sur le type de structure thermoconvective qui se forme, celle-ci restant semblable à celle dictée par les conditions géométriques (rouleaux parallèles aux plus petits

côtés). Par contre si $Re > Re_c$ l'écoulement à tendance à aligner les rouleaux parallèlement à lui-même. Pour être très spécifique, la géométrie du conduit adoptée dans tout ce travail est schématiquement représentée à la Fig. 1. Lorsque les rouleaux ont leurs axes parallèles à Oy, ils seront dits "transversaux" (par rapport à l'écoulement de base qui se fait dans la direction x) et seront indiqués par la suite par le symbole R_{\perp} ; lorsqu'ils sont parallèles à Ox, ils seront dits "longitudinaux" et leur représentation symbolique sera R_{\parallel} . Le but de la présente étude est de déterminer le domaine d'existence de ces deux types de rouleaux qui ne peut être prédit par une théorie linéaire si on est loin d'un point critique, ni même par une théorie non linéaire bidimensionnelle. Comme il n'est pas évident actuellement de faire des simulations numériques tridimensionnelles, nous avons choisi la voie expérimentale pour délimiter leur domaine d'existence.

Concernant le cas R_{\parallel} , Mori et Uchida [9] ont étudié analytiquement le problème de la convection mixte longitudinale et ont déterminé l'amplitude de la vitesse, ensuite comparée avec une étude expérimentale par anémométrie à fil chaud. Les nombres de Reynolds auxquels ils ont travaillé étaient voisins de 500, raison pour laquelle il ne leur était pas permis d'étudier la transition $R_{\perp} \rightarrow R_{\parallel}$. A nouveau Chiu *et al.* [10] ne rapportent dans leurs analyses qu'une étude de R_{\parallel} et en particulier montrent que la distribution des vitesses verticales, en fonction de la coordonnée *y*, n'est pas affectée par le nombre de Reynolds et

FIG. 1. Schéma du canal de mesure.

[†] Adresse permanente: Ecole Mohammadia d'Ingénieurs, BP 765, Agdal-Rabat, Maroc.

NOMENCLATURE								
а	diffusivité thermique	Lettres g	recques					
g	accélération de la pesanteur	β	coefficient d'expansion thermique					
h	hauteur du canal	2	longueur d'onde					
k	nombre d'onde	v	viscosité cinématique					
k _e	nombre d'onde critique	ρ_0	masse volumique moyenne.					
l	largeur du canal							
L	longueur du canal	Nombres	s sans dimension					
Q	débit du fluide	В	rapport de forme <i>l/h</i>					
S	section du canal	С	rapport (U_0/U_{max})					
t	temps	Ra	nombre de Rayleigh, $\rho_0 g \beta \Delta T h^3 / va$					
T_1	température de la plaque chaude	Ra_{c}	nombre de Rayleigh critique de					
T_2	température de la plaque froide		convection naturelle					
ΔT	différence de température, $T_1 - T_2$	Ra_{\perp}^{crit}	nombre de Rayleigh critique					
U	vitesse longitudinale suivant la direction		correspondant à l'apparition de R_1					
	X		en déplacement					
U_0	vitesse débitante du fluide	Ra_{\parallel}^{crit}	nombre de Rayleigh critique					
U_{max}	vitesse longitudinale maximale		correspondant à l'apparition de R_{\parallel}					
U,	vitesse de déplacement des rouleaux	Re	nombre de Reynolds					
U_{\perp}	vitesse longitudinale des R_{\perp}	Rec	nombre de Reynolds critique de					
$oldsymbol{U}_{\parallel}$	vitesse longitudinale des R_{\parallel}		transition $R_{\perp} \rightarrow R_{\parallel}$.					
W	vitesse verticale suivant la direction z							
W_{\perp}^{\max}	vitesse verticale maximale des R_{\perp}	Abréviat	ions					
W_{\parallel}^{\max}	vitesse verticale maximale des R_{\parallel}	R_{\perp}	rouleaux transversaux					
x, y, z	coordonnées spaciales.	R	rouleaux longitudinaux.					

dépend seulement du nombre de Rayleigh. Ces derniers ont présenté une étude détaillée du champ de vitesse dans l'azote pour des nombres de Reynolds Re > 15 et ne se sont pas intéressés à la transition entre différentes structures possible. Dans le même esprit les écoulements laminaires bidimensionnels de convection mixte longitudinale sont aussi étudiés numériquement par Ogura et Yagihashi [11], Hwang et Cheng [12] et Fukui et Nakajima [13] et expérimentalement par Akiyama *et al.* [14], Kamotani et Ostrach [15], Ostrach et Kamotani [16] ainsi que par Mori et Uchida [9] et Fukui et Nakajima [13].

Peu d'études ont considéré des écoulements avec $Re < Re_c$ pour lesquels les forces de pression sont petites comparées aux forces de gravité. Platten et Legros [17] ont examiné l'écoulement de convection mixte dans un canal horizontal de section rectangulaire de longueur infinie, l'écoulement primaire étant l'écoulement de Poiseuille isotherme. Ils ont déterminé à l'aide de la théorie linéaire, dans le plan (Ra - Re), les conditions pour lesquelles le champ de l'écoulement secondaire apparaît sous forme R_{\perp} ou R_{\parallel} . Luijkx et al. [6] ont montré, pour une huile au silicone, l'existence de R_{\perp} dans un canal de rapport de forme l/h = 5, chauffé par le bas. Récemment, Ouazzani et al. [8] ont considéré une approche numérique et expérimentale du problème de la convection mixte entre deux plans horizontaux à températures différentes dans le cas de l'air. Leur étude numérique bidimensionnelle conduit à une structure d'écoulement sous la forme de rouleaux transversaux en déplacement. La transition entre R_{\perp} et R_{\parallel} est observée expérimentalement par visualisation de l'écoulement à l'aide de la fumée de tabac. Ils montrent que la vitesse de déplacement des ondes transversales est différente de la vitesse débitante et qu'elle est fonction de Ra. Ils la calculent explicitement dans une étude numérique utilisant la technique des différences finies et la comparaison avec l'observation dans l'air s'avère bonne. Très récemment Evans et Greif [18] se sont intéressés au transfert de chaleur par convection mixte dans l'hélium dans un canal horizontal avec un rapport d'aspect 4 < L/h < 50 mais pour $l \rightarrow \infty$. Des solutions numériques des équations bidimensionnelles transitoires de Navier-Stokes et de l'énergie indiquent qu'une instabilité thermique (instabilité de Rayleigh-Bénard) dans le fluide, produite par la différence de température entre les deux surfaces horizontales du canal, est accompagnée d'un déplacement des ondes transversales. Leurs résultats montrent l'influence de ces ondes sur l'écoulement et le transfert de chaleur pour une plage de nombres de Reynolds comprise entre 0,1 et 100. La transition $R_{\perp} \rightarrow R_{\parallel}$ n'est pas observée puisque leur étude numérique est bidimensionnelle.

La plupart des résultats expérimentaux sont restreints à une visualisation de l'écoulement et à une détermination des profils de température pour des nombres spécifiques de Ra et Re. Au contraire dans cette étude, nous présentons les résultats des mesures de vitesses locales par anémométrie laser pour l'eau ($Pr \approx 7$), pour les deux modèles d'écoulement existant soit sous forme d'ondes transversales ou de rouleaux longitudinaux. Les conditions d'apparition de la convection mixte ainsi que les différentes transitions sont observées. Les résultats quantitatifs sur le champ de vitesse devraient être comparés avec les résultats théoriques dés qu'une analyse tridimensionnelle complète existera. En attendant, quelques tentatives de comparaison seront faites avec des théories restreintes. Afin d'observer les transitions $R_{\perp} \rightarrow R_{\parallel}$, notons que nous avons travaillé avec des nombres de Re très petits $(0,03 \leq Re \leq 3,3)$. Enfin pour clôturer cette introduction, mentionnons que Pocheau et al. [19] ont étudié la déformation d'une chaîne unidimensionnelle de rouleaux de Rayleigh-Bénard sous l'action d'un écoulement moyen de très faible intensité dans une géomètrie annulaire. Ils ont démontré l'existence d'un gradient dans la taille des rouleaux pour des vitesses d'écoulement de l'ordre de 1 μ m s⁻¹, correspondant à des $Re \simeq 10^{-4}$. D'aussi faibles écoulements étaient provoqués par thermosiphon. Selon Brand [20], il est fort probable que ce troisième type de structure (R_{\perp} non convectés mais de taille variable) soit lié à la géométrie particulière choisie.

2. CANAL ET DISPOSITIF EXPERIMENTAL

Le canal de mesure est constitué de deux plaques de cuivre maintenues parallèles à l'aide de deux joints de Plexiglas, dont l'épaisseur définit la hauteur h du canal. Deux fenêtres de verre d'épaisseur de 2 mm collées à l'Araldite le délimitent latéralement. Les dimensions de ce canal sont les suivantes : largeur $l = 15,05 \pm 0,05$ mm, hauteur $h = 4,15 \pm 0,05$ mm et longueur $L \simeq 115$ mm, largement suffisante pour tenir compte d'une part des longueurs d'établissement dynamique et thermique dues à l'entrée [21], ainsi que des effets perturbateurs provenant de la sortie du canal, et d'autre part de la longueur de relaxation du phénomène convectif [17]. Les plaques de cuivre sont rendues séparément isothermes aux températures T_1 et $T_2 < T_1$ au moyen d'une circulation d'eau thermostatée. La température de chaque plaque est calculée à partir des températures d'entrée et de sortie de l'eau de thermostatisation. La précision sur T_1 et T_2 est de 1/100 de degré. Le fluide d'étude (eau), provenant d'un bac à niveau constant, passe d'abord dans un serpentin plongé dans le bain thermostaté le plus chaud, traverse le canal d'écoulement, pour ensuite passer à travers une vanne permettant de régler son débit, mesuré par chronométrage du temps nécessaire à l'écoulement d'un volume déterminé. Cette manière d'imposer et de mesurer le débit, la moins onéreuse, assure cependant une stabilité en général à 5% près. Ce sera donc l'erreur sur le débit. L'erreur non systématique sur Ra et Re sera donc respectivement de l'ordre de 1% et de 5%. Une erreur systématique est bien entendu liée à l'imprécission sur h. Elle est importante pour Ra $(+h^3)$. L'installation d'anémométrie Doppler-laser utilisée est celle décrite à la référence [22] et plus de détails ne seront pas donnés

FIG. 2. Courbe de chauffe: carré de la vitesse verticale en fonction de ΔT .

ici. Elle est interfacée avec un microordinateur capable d'enregistrer au cours du temps la vitesse en un point donné [23]. L'ambiguïté sur le signe de la vitesse est résolue par l'utilisation d'une double cellule de Bragg, avec un shift réel généralement de 2 kHz. Un point expérimental est pris toutes les secondes, sauf si au moment de la prise de mesure l'amplitude du signal n'est pas suffisante par rapport au bruit de fond : la mesure est alors reportée à la seconde suivante. Enfin, le canal est monté sur une table de translation permettant son déplacement suivant les trois directions; cela permet le positionnement de la sonde optique en tout point à l'intérieur du canal.

3. CAS LIMITES DE CONVECTION LIBRE OU FORCE

Avant l'étude systématique de la convection mixte, nous nous sommes assurés de la conformité des résultats obtenus dans les cas limites, d'une part de l'écoulement de Poiseuille isotherme et d'autre part de la convection naturelle à Re = 0. Une investigation expérimentale a permis de déterminer les conditions d'apparition des rouleaux transversaux dus aux forces de gravité, caractérisant la convection naturelle, dans le canal rectangulaire précédemment décrit chauffé par le bas et refroidi par le dessus. La valeur du nombre de Rayleigh critique associé, déduit de la courbe de chauffe après plusieurs séries de mesure est $Ra_c = 1730$ (Fig. 2), avec un nombre d'onde $k_c = 3,1$ (Fig. 3). Cette valeur de Ra_c est à comparer avec la valeur théorique de 1708 [24] dans le cas d'une couche horizontale infinie, 1718 [25] dans le cas d'un rapport d'aspect B = l/h = 4 et environ 1725 [7] dans le cas de notre rapport de forme B = 3,63. La valeur expérimentale du nombre d'onde obtenue ($k_c =$ 3,1) est à comparer aux valeurs théoriques de 3,117 pour $B \rightarrow \infty$ et de 3,004 pour B = 4. Par ailleurs dans le but de vérifier le profil de vitesse de l'écoulement laminaire isotherme établi, les distributions de vitesse sont mesurées dans plusieurs sections de la

FIG. 3. Vitesse verticale W(x) pour des rouleaux transversaux (cas Re = 0) en z = h/2 et y = 1/2.

zone d'étude loin à la fois de l'amont et de l'aval du canal. Une représentation des mesures de U(z) est donnée à la Fig. 4. Cette détermination de U(z) a été faite en $y = \frac{1}{2}$, où les effets des parois latérales ne sont pas visibles. Ces mesures concordent aussi bien avec un profil parabolique qu'avec la solution analytique donnée par Platten et Legros [17]. La Fig. 5 montre, comme il se doit, une relation linéaire entre la mesure de U_{max} et le débit Q. Il est connu que lorsque $B \to \infty$, on a :

$$Q = C \cdot U_{\max} \cdot S \tag{1}$$

où S est la section du canal et C, rapport entre la vitesse débitante et vitesse maximale, est une constante égale à $\frac{2}{3}$. Lorsque le rapport d'aspect B est fini, la relation théorique (1) reste valable pourvu que C = C(B). Cette fonction C(B) a été tabulée pour différents B [7]. A partir de la pente de la droite de la Fig. 5, on observe que C n'est pas égal à 0,67 comme pour le cas de deux plans horizontaux infinis. Il est

1.0 0.8 0.6 V0.4 0.2 0.0 V U (μ m s⁻¹) 120 160

FIG. 4. Vitesse longitudinale U(z/h) en y = 1/2 pour un écoulement isotherme dynamiquement établi avec Re = 0.32. *, mesures expérimentales; ----, solution analytique.

FIG 5. Débit du fluide en fonction de la vitesse longitudinale maximale.

égal à 0,58. Cette différence est forcément liée aux effets de bords latéraux.

Pour B = 3.63 la valeur théorique de C est environ 0.56. Enfin, la mesure de U_{max} pour le plus grand des nombres de Reynolds considérés (Re = 3.3) donne des résultats identiques pour des x compris entre 40 et 90 mm. Nous précisons que la section de mesure, utilisée dans la suite, est située en x = 65 mm.

4. RESULTATS EN CONVECTION MIXTE

Une investigation expérimentale a été réalisée pour déterminer les valeurs de Ra et Re conduisant à l'apparition tantôt d'écoulements sous forme de R_{\perp} , tantôt sous forme de R_{\perp} . Lors de cette étude, nous avons remarqué par moment une troisième forme d'écoulement : la superposition de ces deux modèles de mouvement convectif, pour des combinaisons très particulières de Ra et Re. De plus, à Ra et Re fixes, le mode convectif sélectionné peut être influencé par les conditions initiales.

4.1. Transition pour les petits nombres de Reynolds (Re < 0.6)

Un premier essai est effectué pour un débit de 0,17 $cm^3 min^{-1}$, soit un nombre de Reynolds égal à 0,21, en augmentant progressivement la différence de température ΔT de 0 à 2,77 K. Le nombre de Rayleigh critique Ra_{\perp}^{cnt} , correspondant à l'apparition d'ondes transversales en déplacement dans le sens de l'écoulement de base, déduit de la courbe de chauffe analogue à la Fig. 2, montre peu de variation du point critique, à ce faible Re, relativement à celui de l'instabilité de Rayleigh-Bénard donné précédemment pour cette configuration. L'enregistrement en fonction du temps de l'amplitude de la vitesse W au point médian de la section située en x = 65 mm est donnée à la Fig. 6 pour cinq valeurs du nombre de Rayleigh. L'existence d'oscillations temporelles dans W, autour d'une valeur moyenne nulle, d'amplitude indépendante de y (au moins loin des parois), est la sig-

FIG. 6. Vitesse verticale W en fonction du temps pour différents Ra, à Re = 0.21.

nature des rouleaux transversaux en mouvement. Précisons que l'on a d'abord établi un écoulement de Poiseuille isotherme avant d'imposer des gradients de température croissants et que l'existence de R_{\perp} ne peut être imputée à une quelconque condition initiale, comme par exemple l'existence préalable de tels rouleaux à Re = 0, mis ensuite en mouvement par une augmentation de Re. L'amplitude de W dépend de Ra (Fig. 6). La fréquence des oscillations est proportionnelle à Re (Fig. 7). La fréquence, ou la période, permettrait de mesurer la vitesse de propagation des rouleaux U_r si leur dimension λ était connue; on peut supposer $\lambda = \lambda^{cnt}$, mais comme au-delà d'un point critique il pourrait y avoir variation de la longueur d'onde, on préfèrera avoir une détermination indépendante de la vitesse de propagation U_r . On montre maintenant que cette vitesse U_r est différente de la vitesse débitante U_0 .

Nous avons entrepris de mesurer la vitesse de déplacement des ondes transversales U, pour plusieurs gradients de température entre les deux plaques horizontales et pour différents débits. Au cours du défilement des rouleaux transversaux, un chronomètre est déclenché au moment où la vitesse verticale W, mesurée au point médian de la section de mesure,

s'annule, c'est-à-dire lorsque la sonde de mesure est confondue avec le centre d'un rouleau. La table de translation est alors déplacée par pas successifs de manière à suivre le centre du rouleau et ceci d'une distance de 10 mm. On note la durée Δt de cette manoeuvre. La vitesse de déplacement des ondes est alors 10 mm $[(\Delta t) s]^{-1}$. Cette mesure de U, est effectuée pour cinq valeurs différentes de Ra à savoir (Ra = 1791; 2024; 2420; 3460 et 4700). Pour chaque Ra, on fait également varier le débit. On note que si Ra est fixe le rapport U_e/U_0 est indépendant de Re. A titre d'exemple, à Ra = 2420, on trouve :

$$Re = 0.19 \quad U_r/U_0 = 1.38$$

$$Re = 0.53 \quad U_r/U_0 = 1.40$$

$$Re = 0.65 \quad U_r/U_0 = 1.40$$

$$Re = 0.83 \quad U_r/U_0 = 1.39$$

. ...

La Fig. 7 montre un enregistrement de W(t) pour ces quatre Re, précédés du cas Re = 0. Remarquons qu'au plus grand Re, l'écoulement sous forme R_1 est transitoire. Il évolue rapidement vers des R₁ caractérisés par une vitesse W constante dans le temps. Ces

FIG. 7. Evolution de la vitesse verticale W(t) pour Ra = 2420 et différents Re. Transition R_{\perp} de convection naturelle vers R_{\perp} en déplacement pour Re > 0 puis vers R_{\parallel} pour Re = 0.83.

FIG. 8. Vitesse de déplacement des rouleaux U_r rapportée à la vitesse débitante U_0 , en fonction de Ra.

mesures de $\langle U_r/U_0 \rangle$ sont portées à la Fig. 8 en fonction de *Ra* et montrent que ce rapport décroît, dans l'intervalle considéré, linéairement lorsque *Ra* augmente selon las loi empirique :

$$\frac{U_{\rm r}}{U_0} = -8.67 \times 10^{-5} \, Ra + 1.62. \tag{2}$$

Pour les conditions critiques ($Ra_c = 1730$), on déduit à partir de l'équation (2) que U_r/U_0 est égal à 1,47. Dans l'étude de la stabilité linéaire Luijkx *et al.* [6] donnent la valeur théorique de 1,5, ce qui montre une bonne concordance. Des résultats analogues de U_r/U_0 en fonction de Ra ont été observés dans l'air dans l'étude de Ouazzani *et al.* [8]; par contre la grande différence entre les pentes de $U_r/U_0 = f(Ra)$ peut bien être due à la nature du fluide, c'est-à-dire liée au nombre de Prandtl.

4.2. Transition pour les grands nombres de Reynolds (Re > 0.6)

Lorsque le nombre de Reynolds caractérisant la vitesse moyenne de l'écoulement de Poiseuille est supérieur à une valeur proche de 0,60, les instabilités thermoconvectives sous la forme R_{\parallel} apparaissent d'abord. Expérimentalement de tels rouleaux sont caractérisés par une vitesse verticale W, mesurée en un point, indépendante du temps, et par sa variation périodique en fonction de y. Des exemples de mesures locales de W(y) seront donnés plus tard. L'apparition de R_{\parallel} se fait toujours pour un écart de température proche de $\Delta T = 1,47$ K, indépendent de Re. Le nombre de Rayleigh critique correspondant est alors $Ra_{\parallel}^{crit} \simeq 1840$. La Fig. 9 montre les résultats de plusieurs essais proches de la courbe critique dans le plan Ra - Re: le symbole × correspond à une convection sous forme de R_{\parallel} ; \triangle à celle sous la forme de R_{\perp} et le symbole

correspond à l'écoulement de Poiseuille. Il est tentant de rapprocher les résultats rapportés à la Fig. 9 de ceux de la théorie linéaire de la stabilité qui pour des rouleaux longitudinaux infinis au sein d'un conduit de section rectangulaire chauffé par le

FIG. 9. Représentation dans le plan (Ra - Re) des transitions entre un écoulement de Poiseuille (\oplus) et une convection sous forme $R_{\perp}(\triangle)$ ou sous forme $R_{\perp}(\times)$.

bas [7, 25] donne, pour le rapport de forme B = 3.6. un nombre de Rayleigh critique Ra_i^{crit} qui a pour valeur 1846 indépendamment de la valeur de *Re* (fait qui semble expérimentalement vérifié).

Puisque des R_{\perp} ont été observés à faibles nombres de Re pour des valeurs de Ra bien inférieures à $Ra_{\parallel}^{cnt} = 1840$, nous croyons que la Fig. 9 est une preuve expérimentale que Ra_{\parallel}^{cnt} est supérieur à Ra_{\perp}^{cnt} . Le nombre de Rayleigh critique Ra_{c} qui est égal à 1730 lorsque Re = 0 augmente donc avec le nombre de Reynolds jusqu'au moment où la convection apparaît sous forme de R_{\parallel} à $Ra_{\parallel}^{cnt} \simeq 1840$. Notre prudence est liée aux faibles variations théoriques de Ra_{\perp}^{cnt} avec Re, ainsi qu'aux incertitudes expérimentales sur sa mesure (au moins 1% lié à l'incertitude sur ΔT^{cnt} , c'est-à-dire ± 20 unités sur Ra^{cnt}). Cependant. la Fig. 10 montre une fois de plus que Ra_{\perp}^{cnt} est une fonction croissante de Re. Cette figure a été obtenue dans les conditions suivantes.

A Re = 0, on impose un gradient de température tel que $Ra_{\perp}^{ent} < Ra = 1804 < Ra^{ent}$ correspondant à une convection sous forme de R_{\perp} . Ensuite on augmente Re par pas successifs. La convection avec R_{\perp} subsiste pour Re = 0.04; 0,13; 0.18. Pour Re = 0.25elle disparaît après plusieurs oscillations (expulsion des rouleaux existants) et le système retourne vers l'écoulement de Poiseuille. Une diminution du nombre de Re fait réapparaître les R_{\perp} . Cette expérience a été renouvelée plusieurs fois.

Outre la transition $R_{\perp} \rightarrow R$ citée précédemment, obtenue à Ra constant par augmentation progressive du nombre de Reynolds (Fig. 7), la transition inverse d'une structure en R_{\perp} vers une structure en R_{\perp} est aussi observée par diminution du nombre de Reynolds. Les paramètres (Ra, Re) pour les transitions inverses sont sensiblement les mêmes que pour les transitions directes.

Avant de clore ces deux paragraphes sur les structures observées en R_{\perp} et R_{\parallel} , il est important de noter parfois l'influence des conditions initiales. Ceci est

FIG. 10. Evolution de la vitesse verticale W(t) pour Ra = 1804 et différents Re. Transition vers l'écoulement de Poiseuille.

mis en évidence lors d'un essai à Re = 0.36. En effet, l'augmentation de Ra à partir d'une valeur nulle conduit d'abord à une structure en R_{\perp} , puis à une transition en R_{\parallel} à Ra = 2429 (Fig. 11). Ces R_{\parallel} subsistent pour des Ra allant jusqu'à 4700. L'obtention de R_{\parallel} pour Ra = 2420 (Fig. 7) par augmentation de Re, à Ra fixe, n'a été observée qu'à partir de Re = 0.83. Ceci montre que pour le point (Ra = 2429; Re = 0.36) du plan (Ra, Re), les conditions initiales décident de la structure de l'écoulement : elle est sous forme de R_{\perp} si à Ra donné les R_{\perp} initialement présents pour Re = 0sont mis en déplacement lorsqu'on augmente Re; par contre la structure est sous forme de R_{\perp} si, à partir d'un écoulement primaire de Poiseuille, on augmente Ra, à Re constant. Cependant, l'essai effectué dans le sens inverse, c'est-à-dire par une diminution de Ra à partir de la valeur de 4700, ne provoque jamais la réapparition des R_{\perp} . Ils restent R_{\parallel} jusqu'à l'apparition de l'écoulement de Poiseuille.

4.3. Structure des rouleaux longitudinaux et profils de vitesse associés

Dans les conditions d'existence des R, ils apparaissent dans le canal presque toujours au nombre de quatre. Exceptionnellement, nous avons parfois observé trois R_{\perp} . Cela peut très bien être attribué au fait que pour le rapport d'aspect du canal (B = 3,63)il ne semble pas y avoir un écart significatif entre les nombres de Rayleigh critiques représentants les seuils pour lesquels les R_{\parallel} existent au nombre de 3 ou de 4 [25]. Notons que le nombre de rouleaux ne change pas au cours d'une même manipulation, par contre, un changement dans le sens de rotation des rouleaux a été à plusieurs reprises observé, lors d'un changement de Ra. A la Fig. 12(a) nous donnons W(y) à Re = 1,02 pour Ra = 1820 et 2037. Lors du passage à Ra = 2429, il s'est opéré une inversion dans le sens de rotation des rouleaux (Fig. 12(b)). Dans ces deux figures les profils de vitesse W(y) sont mesurés en x = 65 mm et z = h/2. De telles mesures sont recommencées pour différents nombres de Reynolds, afin d'examiner si la vitesse verticale dépend de Re lorsque Ra reste constant. Une comparaison entre les profils W(y) pour trois nombres Reynolds et Ra = 2420, est donnée à Fig. 13 et montre que le profile W(y) est indépendant de Re. Aussi bien à la Fig. 12 qu'à la Fig. 13, à cause des bords latéraux, l'enveloppe des rouleaux ne présente pas de palier remarquable comme pour l'écoulement dans un canal ayant pour rapport de forme B = 10 [10].

FIG. 11. Evolution de la vitesse verticale W(t) pour Re = 0.36 fixe et différents Ra.

FIG. 12. Vitesse verticale W(y/h) (cas des R_1) en z = h/2pour Re = 1.02. (a) \bigoplus , Ra = 1820; \bigoplus , Ra = 2037. (b) \bigoplus , Ra = 2429; \bigoplus , Ra = 3494; *, Ra = 4724.

4.4. Etude quantitative des vitesses maximales

Dans la Fig. 14, on représente, pour les deux structures longitudinale et transversale, les vitesses verticales maximales W_{\perp}^{max} et W_{\perp}^{max} pour différentes valeurs du nombre de Reynolds et des valeurs de *Ra*

FIG 13. Vitesse verticale W(y/h) pour $Ra = 2420 \oplus$, Re = 0.83; \oplus , Re = 1.81; \triangle , Re = 2.71.

FIG 14 Vitesse verticale maximale $W_{max}(Re)$ pour différents $Ra. \bigtriangleup, W_{\perp}^{max} \deg R_{\perp}, \times, W_{\perp}^{max} \deg R_{\perp}.$

variant de 2024 à 4700. Pour les valeurs de Ra = 4700et 3460, on ne remarque pas de différence notable entre les vitesses maximales des deux structures et cette vitesse maximale est indépendante du nombre de Re. Par contre, on peut remarquer que $W^{\max} < W^{\max}_{\perp}$ pour Ra = 2420, chacune des amplitudes étant séparément indépendante de Re. L'écart entre ces deux vitesses est de l'ordre de 10% ; cet écart devient 40% pour Ra = 2024 et Re < 0.8. A ce dernier nombre de Rayleigh W^{max} reste constant pour Re < 0.8, mais décroît lorsque Re devient plus grand que 0.8. Ces diminutions dans l'amplitude de W_{\parallel}^{max} pourraient être attribuées d'abord à l'effet des bords latéraux. d'autant plus marqués que Ra est faible, et ensuite à une longueur de relaxation de l'écoulement secondaire qui augmente avec Re: il n'est pas sûr qu'un régime stationnaire soit déjà établi dans le plan de mesure à x = 65 mm à ces faibles *Ra* et relativement grands Re.

Les valeurs de W_{\perp}^{max} dépendent du nombre de Rayleigh (Fig. 15). Elles sont comparées à ce que prédit l'étude théorique de la convection de Rayleigh-

800 600 50 400 200 0 0 0 0 1000 2000 3000 4000 5000 Ra

FIG. 15. Vitesse verticale maximale W_1^{max} (*Ra*) des rouleaux transversaux. •, mesures expérimentales; -----, solution analytique.

Bénard [26, 27] en l'absence d'écoulement pour une cellule infinie dans les deux directions horizontales

$$W^{\max} = 0.87 \sqrt{2k_c^2} \frac{v}{Pr \cdot h} \left(\frac{Ra - Ra_c}{Ra_c}\right)^{1/2} \qquad (3)$$

soit

$$W^{\max} = 418 \left(\frac{Ra - 1730}{1730}\right)^{1/2} \mu m s^{-1}$$
 (4)

si on adopte $k_c = 3,004$; Pr = 6,42 et $v = 10^{-2}$ cm² s⁻¹. Il est raisonnable de penser que W_{\perp}^{max} n'est pas affecté par un écoulement faible. La partie (a) du Tableau 1 montre que l'écoulement ne semble pas avoir d'effets sur l'amplitude de la vitesse verticale maximale W_{\perp}^{max} des R_{\perp} . La Fig. 7 illustre bien l'égalité de W_{\perp}^{max} dans les deux cas où Re = 0 et $Re \neq 0$ (mais petit). La partie (b) du tableau, illustre la variation de W_{\perp}^{max} avec Ra (à Re fixe) et la comparaison avec la formule (4), valable à Re = 0, montre un bon accord. Nous ne donnons pas de comparaison à $Ra \simeq 4700$ car l'équation (3) ou (4) est valable si $(Ra - Ra_c)/Ra_c < 1$. La comparaison quantitative de W_{\parallel}^{\max} avec une prédiction théorique est plus malaisée. Supposons la formule (3) valable à condition d'y remplacer Ra_c par $Ra_1^{crit} = 1840$. Le Tableau 2 compare les valeurs expérimentales aux valeurs calculées à partir de (3). Il montre qu'à Ra petit (Ra = 2024) la valeur expérimentale est toujours inférieure à la valeur théorique et qu'elle d'autant plus basse que Re augmente. Nous avons déjà proposé l'effet des bords latéraux et la longueur de relaxation comme responsables. A Re fixe (par exemple $Re \simeq 0.86$ ou Re = 1,02) à nouveau la valeur expérimentale est inférieure à la valeur théorique aux nombres de Ra les plus faibles. Lorsque Ra augmente la valeur expérimentale dépasse la valeur théorique. Par contre si on utilise l'équation (4), à grand nombre de Rayleigh la comparaison reste bonne comme le montre la Fig. 14 puisque dans ces conditions $W_{\perp}^{\max} = W_{\parallel}^{\max}$. Nous ne

Tableau 1						
Ra	Re	W_{\perp}^{\max} (μ m s ⁻¹) expérimentale	Prédiction théorique equation (4)			
(a)						
2024	0,15	180	172			
	0,26	180				
	0,42	180				
2420	0,19	273	264			
	0,53	273				
	0,65	273				
3460	0,19	445	418			
	0,21	432				
	0,46	445				
(b)			<u> </u>			
2074	0,21	197	186			
2490		292	277			
2896		357	343			
3460		432	418			

Tableau	2
---------	---

Ra	Re	W ^{max} (μm s ^{- i}) expérimentale	Formule théorique (3) avec $Ra_c = 1840$	Formule théorique (3) avec $Ra_c = 1730$
2024	0,74 0,85 1,62	$105 \\ 80 \\ \simeq 0$	132	172
2024	0,86	112	132	172
2423		246	235	264
3454		435	392	417
2037	1,02	105	137	176
2429		246	237	266
3494		445	396	422

concluerons pas en l'absence d'une théorie non linéaire tenant compte d'effets de bords latéraux.

Contrairement à W_{\parallel} , la vitesse longitudinale U_{\parallel} des R_{\perp} ne dépend pas de Ra, elle dépend bien entendu de la vitesse débitante U_0 donc de Re. Une comparaison en z = h/2 de U_{\parallel} en fonction de la direction y est montrée à la Fig. 16. Quant à la vitesse longitudinale U_{\perp} des rouleaux transversaux, représentée à la Fig. 17(a) pour Ra = 2417 et Re = 0.4 en z = h/2, h/4et 3h/4, elle indique une valeur quasi-constante en z = h/2, alors qu'en z = h/4 et 3h/4, les profils de vitesse $U_{\perp}(t)$ ou $U_{\perp}(x)$ sont des fonctions quasi sinusoïdales en opposition de phases, avec des vitesses positives supérieures aux valeurs absolues des vitesses négatives. Cela veut dire que les rouleaux avec lignes de courant fermées, n'occupent pas toute la hauteur h du canal mais qu'il y a présence de lignes de courants ouvertes qui entourent les rouleaux. Ce phénomène est de moins en moins important quand Ra augmente (Fig. 17(b)).

5. CONCLUSION

En guise de conclusion, nous proposons à la Fig. 18 une schématisation des différents types d'écoulement pouvant exister dans le canal. Ainsi l'écoulement de

FIG. 16. Vitesse longitudinale $U_1(y/h)$ des R_1 . Cas Re = 1,02: \oplus , Ra = 2037; \oplus , Ra = 2429; \triangle , Ra = 3494. Cas Re = 0.86: \Box , Ra = 2024.

FIG. 17. Vitesse longitudinale $U_{\perp}(t)$ des R_{\perp} pour Re = 0,4. (a) Ra = 2417; (b) Ra = 3448.

base de Poiseuille (région I) donne par une augmentation de Ra, une structure de type R_{\perp} (région II) ou R_{\parallel} (région III) suivant la valeur de Re avec, comme montré précédemment, $Ra_{\parallel}^{ent} > Ra_{\perp}^{ent}$ (Re). Ce même écoulement de base de Poiseuille peut donner aussi une structure en R_{\perp} par une diminution de Re pour

des nombres de Rayleigh tels que 1730 < Ra < 1840. Dans ce cas la transition peut avoir lieu dans le sens inverse c'est-à-dire, un modèle en R disparaît par une augmentation de Re pour laisser place à un écoulement pur de Poiseuille. Quant aux rouleaux transversaux, observés dans les cas examinés expérimentalement c'est-à-dire quand $2024 \leq Ra \leq 4700$, ils donnent une structure de rouleaux longitudinaux lorsqu'on augmente Re, à Ra fixe. Par une diminution du nombre de Reynolds, on récupère aux mêmes conditions les R_{\perp} . Dans certains cas, les R_{\perp} disparaissent. en faveur d'une structure en R_d , par une augmentation de Ra à Re fixe, mais ne réapparaissent pas lors d'une diminution de Ra. C'est la région IV où il y a coexistence de R_{\perp} et de R_{\parallel} selon les conditions initiales. Enfin, il existe une toute petite plage (région V) où nous avons observé des comportements bien plus complexes que ceux décrits dans ce travail comme par exemple une superposition des deux types de structures, des phénomènes d'intermittence, etc. Ils seront décrits plus tard.

FIG. 18. Transition entre différents types d'écoulements observés. (I) Ecoulement de Poiseuille. (II) Structure de type R_{\perp} . (III) Structure de type R_{\parallel} . (IV) R_{\perp} ou R_{\parallel} suivant les conditions initiales. (V) Superposition de R_{\perp} et de R_{\parallel} . Les flèches indiquent le sens des transitions observées.

Remerciements—L'un d'entre nous (M.T.O.) remercie les autorités de l'Administration Générale pour la Coopération et le Développement (A.G.C.D./Bruxelles), pour leur aide financière. Ce travail est supporté en partie par le Fonds National de la Recherche Scientifique (F.N.R.S./Bruxelles).

REFERENCES

- M. E. Braaten and S. V. Patankar, Analysis of laminar mixed convection in shrouded arrays of heated rectangular blocks, *Int. J. Heat Mass Transfer* 28, 1699-1709 (1985).
- R. Takahashi, Y. Koga and K. Sugawara, Gas flow pattern and mass transfer analysis in a horizontal flow reactor for chemical vapor deposition, *J. Electrochem.* Soc. 119, 1406–1412 (1972).
- B. J. Curtis, Convective effects in open-tube chemical vapour deposition, *PhysicoChem. Hydrodyn.* 2, 357-366 (1981).
- S. H. Davis, Convection in a box : linear theory, J. Fluid Mech. 30(3), 465-478 (1967).
- K. Stork and U. Müller, Convection in boxes: experiments, J. Fluid Mech. 54, part 4, 499-611 (1972).
- J. M. Luijkx, J. K. Platten and J. Cl. Legros. On the existence of thermoconvective rolls, transverse to a superimposed mean Poiseuille flow, *Int. J. Heat Mass Transfer* 24, 1287-1291 (1981).
- J. M. Luijkx, Influence de la présence de parois latérales sur l'apparition de la convection libre, forcée et mixte, Thèse de Doctorat, Université de Mons (1983).
- M. T. Ouazzani, J. P. Caltagirone, G. Meyer et A. Mojtabi, Etude numérique et expérimentale de la convection mixte entre deux plans horizontaux à températures différentes, *Int. J. Heat Mass Transfer* 32, 261-269 (1989).
- 9. Y. Mori and Y. Uchida, Forced convective heat transfer between horizontal flat plates, *Int. J. Heat Mass Transfer* 9, 803-817 (1966).
- K. C. Chiu, J. Ouazzani and F. Rosenberger, Mixed convection between horizontal plates—II. Fully developed flow, *Int. J. Heat Mass Transfer* 30, 1655– 1662 (1987).
- Y. Ogura and A. Yagihashi, A numerical study of convection rolls in a flow between horizontal plates, J. Met. Soc. Japan 47, 205-217 (1969).
- G. J. Hwang and K. C. Cheng, A boundary vorticity method for finite amplitude convection in plane Poiseuille flow, *Proc. 12th Mtdwestern Mech. Conf.*, University of Notre-Dame, Vol. 6, pp. 207-220 (1971).
- 13. K. Fukui and M. Nakajima, The longitudinal vortex and its effects on the transport processes in combined free and forced laminar convection between horizontal

and inclined parallel plates, Int. J. Heat Mass Transfer 26, 109-120 (1983).

- M. Akiyama, G. J. Hwang and K. C. Cheng, Experiments on the onset of longitudinal vortices in laminar forced convection between horizontal plates, *J. Heat Transfer* 335-341 (November 1971).
- Y. Kamotani and S. Ostrach, Effect of thermal instability on thermally developing laminar channel flow, J. Heat Transfer 62-66 (February 1976).
- S. Ostrach and Y. Kamotani, Heat transfer augmentation in laminar fully developed channel flow by means of heating from below, J. Heat Transfer 220-225 (May 1975).
- 17. J. K. Platten et J. C. Legros, *Convection in Liquids*. Springer, Berlin (1984).
- G. Evans and R. Greif, A study of travelling wave instabilities in a horizontal channel flow with applications to chemical vapor deposition, *Int. J. Heat Mass Transfer* 32, 895-911 (1989).
- A Pocheau, V. Croquette, P. Le Gal and C. Poitou, Convective pattern deformations under mean flow stress, *Europhys. Lett.* 3, 915–920 (1987).
- 20. H. R. Brand, Phase dynamics with a material derivative due to a flow field, *Phys. Rev.* A35, 4461–4463 (1987).
- K. C. Chiu and F. Rosenberger, Mixed convection between horizontal plates—I. Entrance effects, Int. J. Heat Mass Transfer 30, 1645–1654 (1987).
- J. K. Platten, D. Villers and O. Lhost, Laser Doppler Anemometry in Fluid Mechanics (Edited by R. J. Adrian, T. Asanuma, D. F. G. Durão, F. Durst and J. H. Whitelaw), Vol. III, pp. 245-260. Ladoan—Instituto Superior Technico, Lisbon (1988).
- O. Lhost, D. Villers and J. K. Platten, The use of computers in laser velocimetry, *Proc. Int. Spec. Meet.* (Edited by H. J. Pfeifer and B. Jaeggy). ISL (1987).
- S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. Oxford University Press (Clarendon), New York (1961).
- J. M. Luijkx and J. K. Platten, On the onset of free convection in a rectangular channel, J. Non-Equilib. Thermodyn. 6, 141-158 (1981).
- C. Normand, Y. Pomeau and M. G. Velarde, Convective instability: a physicist's approach, *Rev. Mod. Phys.* 49, 581-624 (1977).
- P. Berge and M. Dubois, *Lecture Notes in Physics*, Vol. 72, pp. 133-151. Springer, Berlin (1978).

EXPERIMENTAL STUDY OF MIXED CONVECTION BETWEEN TWO HORIZONTAL PLATES AT DIFFERENT TEMPERATURES—II

Abstract—Laser Doppler velocimetry is used to study the onset of mixed convection under the form of transverse or longitudinal rolls in a rectangular duct. Experiments are conducted for Rayleigh (*Ra*) and Reynolds (*Re*) numbers in the range $0.03 \le Re \le 3.3$ and $Ra \le 4700$, using water as working fluid.

EXPERIMENTELLE UNTERSUCHUNG DER MISCHKONVEKTION ZWISCHEN ZWEI WAAGERECHTEN PLATTEN UNTERSCHIEDLICHER TEMPERATUR—II

Zusammenfassung—Mit Hilfe des Laser-Doppler-Verfahrens wird das Einsetzen der Mischkonvektion untersucht, die durch quer- und längsverlaufende Strömungswalzen in einem rechteckigen Kanal gekennzeichnet ist. Die Versuche werden mit Wasser als Arbeitsstoff in folgenden Bereichen der Rayleigh-(Ra) und Reynolds-Zahl (Re) ausgeführt: $0.03 \le Re \le 3.3$ bzw. $Ra \le 4700$.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СМЕШАННОЙ КОНВЕКЦИИ МЕЖДУ ДВУМЯ ГОРИЗОНТАЛЬНЫМИ ПЛАСТИНАМИ ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ

Аннотация—Для исследования возникновения смешанной конвекции в виде поперечных и продольных валов в канале прямоугольного сечения применялся лазер-допплеровский измеритель скорости. Эксперименты проведены для диапазонов значений чисел Рэлея *Ra* и Рейнольдса *Re* 0,03 ≤ *Re* ≤ 3,3 и *Ra* ≤ 4700 с использованием воды в качестве рабочей жидкости.